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The method of cells~MOC! developed by Aboudi provides a powerful means for studying the propagation
of waves through systems having complicated internal cell structure@Wave Motion9, 141~1987!#. Laminated
materials are a common example. The method can handle harmonic waves and alsotransientwaves arising
from a finite duration impulse. The method is sufficiently robust to treat impact, as we show here. Both linear
and nonlinear elastic-stress-strain relations can be included. The present work generalizes the method to
include viscoelastic materials~such as polymers!, systems with cell structure deviating from perfect periodicity
~including random!, and systems simulating actual impact experiments. We test the theory by comparing our
results with measurements taken from a flat-plate impact experiment. The system investigated was a bilaminate
composed of unit cells of epoxy and epoxy-graphite subcells. Using known and estimated material parameters,
we find that the MOC gives a reasonable representation of the data. We then address some features of the
experimental data that have not yet been explained by other theoretical methods. The importance of unit cell
periodicity is tested by adding a random incremental width to each unit cell. Finally, the shortcomings of the
MOC caused by using a truncated series expansion for the particle displacements, and neglecting plastic flow
and nonadiabatic effects are discussed.@S1063-651X~96!10712-1#

PACS number~s!: 03.40.Dz, 03.40.Kf, 62.30.1d, 62.50.1p

I. INTRODUCTION

Laminated media serve as mechanical wave filters in the
same way as a lattice of point particles connected by me-
chanical springs. The added complication is that wave propa-
gation can also take placewithin each component. In this
sense mechanical energy propagation in one-dimensional
laminates is more analogous to the wave mechanics of elec-
trons in solids when described in terms of the Kronig-Penney
model; in fact the dispersion relations for the two cases are
essentially identical@1#. The standard treatment of wave
propagation in mechanical systems involves the investigation
of material response to sinusoidal disturbances of infinite
extent. That is, we simply obtain the dispersion relation
which gives the relationship between the wave numberk and
the angular frequencyv ~or equivalently, between the phase
velocity c5v/k and the wave number!. Transient wave
propagation~for example, waves of finite duration! can be
treated in these materials by a Fourier decomposition of the
boundary condition, allowing each Fourier component to
propagate with its appropriate phase velocity, and then re-
constructing the pulse at some point removed from the input
boundary@2#. In fact, in certain mechanically dispersive sys-
tems the dispersion relation is itself obtained by the Fourier
transform method@3#. These results, of course, apply only to
linearly elastic materials, although with considerable effort
they may be made to apply to linear viscoelastic solids. Also,
in the case of laminated materials, perfect periodicity is re-
quired.

The application to nonlinear elastic materials and lami-
nates with imperfectly positioned components~either acci-
dentally or by design! require other methods of solution. A
particularly powerful method of treating the nonlinear, in-
elastic deformation of composite materials in three spatial
dimensions is the method of cells~MOC! attributed to
Aboudi @4,5#. MOC gives excellent agreement with exact

results for dispersion relations obtained by invoking the Flo-
quet theory, for example, in the case of harmonic waves
propagating through a linear elastic periodic system@6#, as it
does when compared to exact ray theory@7# for transient
wave propagation. While this method is familiar in engineer-
ing applications, it is less known in physics research. Conse-
quently, one goal of this paper is to demonstrate its wide
versatility, including many potential applications in physics.

Generally, the MOC is designed for systems that are made
up of a periodic repeating assembly of unit cells. The unit
cells are further divided into subcells; the unit cells and sub-
cells will be labeled byp anda, respectively. Here we con-
sider planar laminates normal to thex direction. The dis-
placement is uniaxial and in thex direction. The continuous
local spatial variable within subcella is denoted byx̄. The
MOC method involves expanding the particle displacement
within each subcell of a composite material in terms of
Legendre polynomials. Of course, any complete set of basis
functions will do, but these appear to be the most useful. For
example, we write this expansion in one spatial dimension
~which is the case of interest here! as

ua,p~ x̄,t !5(
l50

N

Ula,p~ t !Pl~2x̄/da!. ~1.1!

All the time dependence in the displacement is now con-
tained in thecell coefficients, Ula,p(t). The essence of the
MOC approach is to substitute Eq.~1.1! into the equation of
motion

]s~a,p!~ x̄,t !

] x̄
5ra,pü

~a,p!~ x̄,t !, ~1.2!

and integrate the result over a unit cell. Upon doing so the
stress,s (a,p), evaluated at the cell boundaries emerges as an
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explicit variable in the equations. These are then removed
from the equations by imposing stress~and also displace-
ment! continuity at all internal cell boundaries separating
materials of different mass densitiesra,p . The stresses at the
external cells are forced to match the desired applied bound-
ary conditions. A more detailed discussion of the MOC is
deferred to Sec. II A.

The MOC has been applied to composites using linear
elasticity theory, and to a slightly lesser degree to systems
where nonlinear elasticity is important. We find in the
present work that nonlinear elastic contributions are very im-
portant and must be kept. By a simple extension of the
Aboudi theory we have also generalized the MOC to handle
~approximately! viscoelastic materials. The formalism is
based onthe standard viscoelastic-solid model@8#, and is
developed in Sec. II B. This extension allows one or more of
the components of the composite to have stress-relaxation
properties. While we test the theory using several common
polymeric compounds such as epoxy and PMMA~polymeth-
ylmethacrylate!, there is no reason,a priori, that the vis-
coelastic properties of other more viscous and perhapsexotic
materials~including those of biological relevance such as
those found in lipid bilayers@9#! could not be investigated by
this technique.

Our second contribution is to adapt the MOC to model the
conditions found in actual impact experiments. A standard
technique for achieving large uniaxial stresses in a sample is
to use some controlled means for firing a flat projectile, a
so-called flyer plate, at the target material and then studying
material response in one spatial dimension. To allow for this
scenario requires two changes in the formalism. First, the
combined flyer plate and composite become the new system;
stress waves initiated by the impact must be allowed to travel
in both materials, including being transmitted and reflected at
the flyer-composite interface. Second, appropriate initial and
boundary conditions must be constructed in terms of the
known quantities — the flyer velocity and material param-
eters. The first of these requires no true alterations in the
MOC formalism, but only changes in the detailed numerics.
The homogeneous flyer is zoned into ‘‘fictitious’’ unit cells,
and stress and displacement continuity are forced at each cell
interface, similar to what is done in the composite. Our ar-
guments for determining the appropriate boundary condi-
tions to match the impact experiment are stated in Sec. II E,
and again they rely on using stress and displacement conti-
nuity, but this time at the impact interface. The crucial step is
to relate the flyer velocity to the particle speedUp , which
can then be related through mass and momentum conserva-
tion @10# to the stress ~and shock speedUs) since
s5rUsUp ; r is the average mass density.

Having made these generalizations we are then able to
compare MOC results to high-velocity shock data that are
taken from an impact experiment performed on a periodic
laminate of epoxy and epoxy graphite. In this experiment a
flyer plate traveling at 0.5003 km/s impacted with the lami-
nated target. Since the stress reached a value of 17 kbar~and
a volume strain of approximately 10%! this experiment pro-
vides a rather stringent test on the theory — it also provides
the reader with a means of assessing the reliability of the
MOC in an actual impact situation. A discussion of the com-
parison is given in Sec. III C.

Previous work by Aboudi@11# investigated the MOC in
comparison with other calculations of transient wave propa-
gation; particularly ray theory~or characteristic theory! in
linear elastic materials. The important difference here is that
we are making a comparison of the MOC with experimental
data. This is an important test of the analytic technique be-
cause it brings into consideration our imperfect knowledge
of material properties. At very low impact stresses, linear
elastic effects are well represented by second-order, adiabatic
elastic moduli. In viscoelastic solids there is always the com-
plication of dissipation at finite strain rates. At higher impact
stress, nonlinear elasticity and plastic flow can occur. The net
effect of comparing the MOC with experimental data is that
we can see its strengths and weaknesses in actual applied
situations. The need for good experimental information on
each component becomes an explicit part of the assessment
of the method.

Our next step was to evaluate the role of the nonideal
periodicity of the unit cell structure in the composite. This
was done by adding a small but randomly chosen additional
width to a minimum allowed value for each cell. A small
amount of disorder was found to have little, but still observ-
able, influence on the results~Sec. III E!. This is an impor-
tant observation since cell periodicity in the experiment was
not perfect, as in most real applications. We also point out
that one should be able to use the MOC to probe wave
propagation in systems characterized as having significant
disorder. One can then use the MOC to study fundamental
issues such as acoustic localization in random layered mate-
rials. Although illuminating theoretical work has already
been devoted to this problem@12,13#, much of it applies to
model systems. The MOC, on the other hand, is designed to
handle true physical systems where material parameters play
a crucial role. This and related problems remain an active
area of experimental research@14#.

An obvious question to ask is why not solve for wave
propagation in the one-dimensional system using finite-
difference methods@15#. This would give as much accuracy
as desired and could certainly handle all types of material
behavior ~nonlinear elastic, viscoelasticity, viscoplasticity,
and so on! @16#. Indeed many of these material properties are
known to be of great importance when high stress fields are
present although they are also difficult to incorporate into the
MOC approach@17,18#. ~Note, in Sec. IV a summary of the
shortcomings of the MOC will be addressed.! It is true that
we could solve for impact of a one-dimensional composite
system by finite difference, but there are several reasons why
we choose to pursue methods like the MOC.

First, we are not looking for a precise numerical solution
to a particular problem in heterogeneous material behavior,
but rather a method that will lead to approximate~but still
reliable! representations of transient wave motion at finite
wavelengths in layered materials. From a computational
point of view, the MOC method is considerably less compu-
tationally intensive compared to a finite-difference calcula-
tion on the same system. A finite-difference approach is chal-
lenged by the fact that material interfaces with large acoustic
impedance mismatches will require a very fine zoning of the
spatial grid. While grid zoning is not a negligible consider-
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ation in the MOC, it seems to be less severe and thus the
MOC remains tractable even in three-dimensional compos-
ites.

Second, the MOC offers an obvious scheme for making
approximations. To suit the problem at hand one can truncate
the MOC expansion~1.1! at the appropriate value ofN. For
some applications it is sufficient to replace the discrete cell
structure of the composite with a homogeneous continuum
that possesses the same mechanical and dispersive properties
in an average sense. As an example, the quasistatic, first-
order theory@expansion ofu in Eq. ~1.1! out to N51# is
very good for a long-wavelength response of laminates, but
gives only the average moduli of the composite and none of
the dispersive properties@19#. In these applications the entire
unit cell p is thought of as being mapped into a single point
in coordinate space. This is the case when one calculates the
long-wavelength limit of dispersion relations for a laminated
material; the discrete laminate can be replaced by a con-
tinuum model. In other applications, such as those presented
here, we retain the time dependence in the displacements, the
acceleration terms, and the full discrete nature of the lamina-
tion. This is done in an attempt to get reasonable dispersion
effects. For that purpose truncating the expansion atN52 is
probably sufficient.

II. GENERALIZED SECOND-ORDER ABOUDI THEORY

In this section we review Aboudi’s dynamical second-
order theory of the method of cells. We shall restrict our
discussion to the special case of longitudinal waves propa-
gating normal to the layering in one-dimensional laminates.
In spite of the restriction to one dimension, this situation can
be realized in conventional planar impact-plate experiments
in which target samples in lateral directions are sufficiently
large. Under these conditions, release waves originating from
the lateral surfaces do not affect the direct longitudinal
waves through the duration of the experiment. Also, al-
though we are explicitly considering longitudinal waves, for-

mally the theory applies~with a change of modulus! to shear
deformation as well.

In the initial application of this method@11,20#, the
Aboudi formalism initiates a stress wave in these systems by
applying a time dependent stresssapp(t) to one side of the
composite system. Transient waves are then studied as they
pass various locations within the composite. In the one-
dimensional applications, the composite is comprised of pe-
riodic repeating unit cells; each of these consists of two com-
ponent subcells forming the laminate. The setup is shown in
Fig. 1. The thickness and mass density of each constituent is
denoted byda andra , respectively. The total width of a unit
cell is thend11d2. In these studies,sapp(t) is taken to be a
smooth, albeit rapidly increasing, analytic function of time.
For this situation the Aboudi formalism has been reviewed in
detail @4,19,21,11,20# and it suffices here to give only a brief
overview before proceeding directly to our extensions of the
formalism as they apply to the systems of interest in the
present work. These extensions are the following:~i!, to in-
clude viscoelastic effects;~ii !, to introduce a shock into the
system by allowing a flyer plate to impact with the compos-
ite sample; and~iii !, to allow for arbitrary system geometries
by removing restrictions that the system has perfect cell pe-
riodicity.

A. Overview of the Aboudi formalism

At the heart of the MOC method is the assumption that
the particle displacementu can be represented by a low-
order truncation of a Legendre series of Eq.~1.1!. Letting x̄
represent a local position variable measured relative to the
center of subcella of unit cell p, the displacement to second
order in the Legendre series can be cast into the form

u~a,p!~ x̄,t !5w~a,p!~ t !1 x̄f~a,p!~ t !

1
1

2 F3x̄ 22da,p
2

4 GU ~a,p!~ t !. ~2.1!

~Here, we already anticipate looking at systems with broken
periodicity and have attached the additional unit cell label to
d.! The time-dependent cell coefficientsw(a,p)(t),f (a,p)(t)
andU (a,p)(t), are determined by a solution of the equations
of motion @Eq. ~1.2!# combined with stress and displacement
continuity at subcell interfaces.

The first step in the procedure is to substitute the displace-
ment, Eq.~2.1!, into the equation of motion Eq.~1.2! and
invoke a stress-strain equation to relate the stress to deriva-
tives of the displacement~the straine). Since we are dealing
with shocks of moderate strength we will allow for nonlinear
elastic effects by going to second order in the strain as con-
sidered by Aboudi@20#

s~a,p!~ x̄,t !5Eae~a,p!~ x̄,t !1 1
2 Ea8 @e~a,p!~ x̄,t !#2, ~2.2!

whereEa ,Ea8 are longitudinal elastic moduli~not to be con-
fused with Young’s modulus which applies to uniaxial stress
conditions!. The strain is derivative of the displacement with
respect to the local cell positionx̄,

FIG. 1. Schematic of a laminated system to which the MOC is
typically applied. Unit cells, labeled 1 throughN are subjected to
an external stresssapp(t). Each unit cell contains two subcells
(a51,2) with subcell widthsd1 andd2 and mass densitiesr1 and
r2.
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e~a,p!~ x̄,t ![
]u~a,p!~ x̄,t !

] x̄

5f~a,p!13x̄U ~a,p!. ~2.3!

One then multiples Eq.~1.2! by x̄ n and integrates the result-
ing equation over subcella. ~As we shall see in Sec. II C, the
full set of equations is derived by weighting the integrands
with the various moments ofx̄ out ton52.!

The solutions to these equations are subject either to ex-
ternal boundary conditions at the outer cells of the system
(a51,p51) and (a52,p5N)

s~1,1!~2d1,1/2,t !5sapp~ t !, ~2.4!

s~2,N!~1d2,N/2,t !50, ~2.5!

for example, or to the conditions for displacement and stress
continuity across each~internal! subcell interface. Between
subcells (1,p) and (2,p) this condition demands

u~1,p!~1d1,p/2,t !5u~2,p!~2d2,p/2,t !, ~2.6!

s~1,p!~1d1,p/2,t !5s~2,p!~2d2,p/2,t !, ~2.7!

plus similar conditions at the interface of adjacent unit cells,
@(2,p)2(1,p11)#

u~2,p!~1d2,p/2,t !5u~1,p11!~2d1,p11/2,t !, ~2.8!

s~2,p!~1d2,p/2,t !5s~1,p11!~2d1,p11/2,t !. ~2.9!

For example, displacement continuity@Eqs. ~2.6! and ~2.8!#
immediately yields two equations for the cell coefficients,

w~1,p!1
d1,p
2

f~1,p!1
d1,p
2

4
U ~1,p!

5w~2,p!2
d2,p
2

f~2,p!1
d2,p
2

4
U ~2,p!, ~2.10!

and

w~1,p11!2
d1,p11

2
f~1,p11!1

d1,p11
2

4
U ~1,p11!

5w~2,p!2
d2,p
2

f~2,p!1
d2,p
2

4
U ~2,p!. ~2.11!

Here we adopt the shorthand notation of omitting the explicit
time variable inw(a,p),f (a,p), andU (a,p).

The result of carrying out this procedure is a set of equa-
tions that when combined with the stress continuity condi-
tions, permit the entire set of cell coefficients
w(a,p),f (a,p),U (a,p), to be uniquely determined. We defer
discussing these steps until Sec. II D. The present work deals
with composites with one or more of its components being a
polymeric material and hence it is first necessary to assume a
slightly more generalized stress-strain relation. Including vis-
coelastic effects is our first extension of the Aboudi formal-
ism, as we now discuss.

B. Viscoelastic effects

Certain classes of solid materials have physical properties
resembling both those of elasticity and those of stress relax-
ation @8,22#. Compounds made up of large molecules, such
as polymers, are examples. Under the action of an applied
stress these materials do not deform instantaneously accord-
ing to a simple time-independent stress-strain relation like
Eq. ~2.2!. Rather, at a given timet and location, the stress
generally depends on the deformation history. Also, these
materials differ from viscoplastic solids in their ability to
recover their shape when the applied stress is removed. A
common way of handling these ‘‘viscoelastic’’ materials is
by introducing a relaxation timeta into a dynamicelastic-
stress-strain equation. If the application of stress is suffi-
ciently fast the material will respond elastically in close ac-
cordance with Eq.~2.2!, with (Ea ,Ea8 ) being the relevant
moduli. On the other hand, in the viscous domain at very low
loading rates we expect the material will respond according
to reduced or ‘‘relaxed’’ set of moduli (Ma ,Ma8 ). The time
scale for switching from one behavior to the other is con-
trolled byta and a scheme that interpolates from one type of
behavior to the other is implemented by replacing Eq.~2.2!
by thestandard viscoelastic-solid model@8#

ṡ~a,p!~ x̄,t !2 ė ~a,p!~ x̄,t !„Ea1Ea8e~a,p!~ x̄,t !…

52S s~a,p!~ x̄,t !2Mae~a,p!~ x̄,t !2 1
2 Ma8 @e~a,p!~ x̄,t !#2

ta
D .

~2.12!

Note again here thatEa , etc., are longitudinal elastic moduli
corresponding toc11 in Voigt notation~not Young’s modu-
lus!. The formal solution of this equation, which is consistent
with the material being in a state of zero stress att50, is
easily determined

s~a,p!~ x̄,t !5S Ead t,t81FMa2Ea

ta
G E

0

t

dt8e~ t82t !/taD
3e~a,p!~ x̄,t8!1

1

2 S Ea8d t,t81FMa82Ea8

ta
G

3E
0

t

dt8e~ t82t !/taD @e~a,p!~ x̄,t8!#2 , ~2.13!

where each integral acts on thee (a,p)( x̄,t) to the right of it.
To proceed further, the relaxed moduli (Ma ,Ma8 ) can al-

ways be written in terms of the unrelaxed moduli as
Ea5naMa andEa85na8Ma8 . Without additional knowledge
to the contrary we now make the simplifying assumption that
na5na8 , that is, the linear and nonlinear elastic moduli are
reduced in the same proportion. This immediately allows Eq.
~2.13! to be written succinctly as

s~a,p!~ x̄,t !5T ~a,p!~ t !$Eae~a,p!~ x̄,t8!1 1
2Ea8 @e~a,p!~ x̄,t8!#2%,

~2.14!

where we have introduced a viscoelastic-relaxationoperator
T (a,p)(t), as
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T ~a,p!~ t ![d t,t81S na21

ta
D E

0

t

dt8e~ t82t !/ta ; ~2.15!

the integral acts on all time-dependent quantities to the right
of it.

The strain from Eq.~2.3! can now be inserted into Eq.
~2.14! to give the stress at any positionx̄, in cell (p,a) at
any time once the cell coefficients,w(a,p),f (a,p), and
U (a,p), are known. Further, if the material is purely elastic
the relaxation rationa51 and Eq.~2.14! still applies.

To give the reader a feel for the behavior of this relax-
ation function, a plot of afictitiousstraine(t) and the stress
calculated from the linear term in Eq.~2.14! is shown in Fig.
2 for various values oft. The input strain field used in this
figure is for illustration only and bares no direct connection
to the numerical results of the following sections. The elastic
modulusE is assigned a value of unity so that the stress
exactly equals the strain when the relaxation contribution is
zero. Thus any deviation in the stress curve from the strain
reflects the importance of the relaxation function. The relax-
ation ratio n was chosen to be 0.7. Two observations are
notable. First, the longest relaxation times~the biggestt)
correspond most closely to an elastic solid — relaxation ef-
fects are smallest. Conversely, the shorter the relaxation
time, the greater the stress tends to lag any change in the
deformation. Second, short duration, large strain-rate pro-
cesses are influenced less by the relaxation term.

C. Stress equations

We now return to integrating the equation of motion, as
outlined in Sec. II A. Since the inclusion of viscoelastic ef-
fects produces only a minor complication to the Aboudi
equations, via the introduction of the relaxation operator
T (a,p)(t), we will maintain our attempt to keep the discus-
sion brief.

Integrating the equation of motion over subcella gives
the zeroth moment equation,

s~a,p!~1da,p/2,t !2s~a,p!~2da,p/2,t !5ra,pda,pẅ
~a,p!.

~2.16!

Multiplying the equation of motion first byx̄ and integrating
gives the first-moment equation,

s~a,p!~1da,p/2,t !1s~a,p!~2da,p/2,t !2
ra,pda,p

2

6
f̈~a,p!

5
2

da,p
E

2da,p/2

1da,p/2

s~a,p!~ x̄,t !dx̄, ~2.17!

and similarly, multiplying byx̄ 2 and integrating produces the
second-moment equation,

ra,p

3
ẅ~a,p!2

da,p
2 ra,p

60
Ü ~a,p!5

1

da,p
S 2

da,p
D 2

3E
2da,p/2

1da,p/2

s~a,p!~ x̄,t !x̄dx̄.

~2.18!

It is a straightforward task to evaluate these integrals upon
inserting the stress-strain equation@Eq. ~2.14!#. Thereafter,
Eqs. ~2.16! and ~2.17! can be added and subtracted to yield
the stress evaluated at the~sub!cell interface

ra,pda,pH da,p

6
f̈~a,p!1ẅ~a,p!J 12T ~a,p!~ t !f~a,p!

52s~a,p!~1da,p/2,t ! ~2.19!

and

ra,pda,pH da,p

6
f̈~a,p!2ẅ~a,p!J 12T ~a,p!~ t !f~a,p!

52s~a,p!~2da,p/2,t !. ~2.20!

Inserting these into the stress continuity condition@Eq. ~2.7!#
for two adjoining subcells@(1,p)2(2,p)# yields

r1,pd1,p
2 H d1,p6 f̈~1,p!1ẅ~1,p!J 2

r2,pd2,p
2 H d2,p6 f̈~2,p!2ẅ~2,p!J

5T ~2,p!~ t !f~2,p!2T ~1,p!~ t !f~1,p! , ~2.21!

and two adjacent unit cells@Eq. ~2.9! (2,p21)2(1,p)#

r2,p21d2,p21

2 H d2,p21

6
f̈~2,p21!1ẅ~2,p21!J

2
r1,pd1,p

2 H d1,p6 f̈~1,p!2ẅ~1,p!J
5T ~1,p!~ t !f~1,p!2T ~2,p21!~ t !f~2,p21! . ~2.22!

This gives two more~second-order integral-differential!
equations for the cell coefficients. A third equation follows
immediately by evaluating the integral in the second-moment
equation, Eq.~2.18!. The result is

ra,p

3
ẅ~a,p!2

da,p
2 ra,p

60
Ü ~a,p!5T ~a,p!~ t !U ~a,p!. ~2.23!

D. Method of solution

Equations~2.10!, ~2.11!, ~2.21!, ~2.22!, and~2.23!, along
with the appropriate boundary conditions for the external

FIG. 2. Stress calculated from Eq.~2.19! for a ‘‘fictitious’’ input
strain ~solid curve! for various relaxation timest. ~The stress is in
units of Mbar.!
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cells, provide a sufficient number of equations, to give a
unique solution of the cell coefficients. Aboudi@20# has pro-
vided a useful algorithm for solving these equations, which
for completeness we now outline. For each cell, there are six
independent equations. The structure of these equations is
such that they couple a given subcell with its two adjacent
neighbors.~One subcell belongs to a neighboring unit cell,
and one is the partner subcell to its own unit cell.! One can
map, starting withp51 cell, occupying the first six rows, the
p52 cell, occupying the next six rows, and so on, up to unit
cell p5N, the entire set of equations onto a matrix equation
of the form

AQ̈~ t!5R~ t!, ~2.24!

where we have followed the notation of Ref.@20#. The ma-
trix A is a 6N36N parameter matrix constructed from the
da,p and ra,p . The column matrixQ̈(t) is composed of
second-time derivatives of the cell coefficients

Q̈~ t !51
ẅ~1,1!~ t !

ẅ~2,1!~ t !

f̈~1,1!~ t !

f̈~2,1!~ t !

Ü ~1,1!~ t !

Ü ~2,1!~ t !

.

.

Ü ~2,N!~ t !

2 ~2.25!

and column matrixR(t) consists of all terms in these equa-
tions containing no time derivatives. They include terms with
the viscoelastic relation operatorT (a,p)(t). Upon inverting
A and representing the second-time derivative as a finite dif-
ference, the solution of the entire set of differential equations
is gotten by the time evolution of

Q~ t1Dt !5~Dt !2A21R~ t !12Q~ t !2Q~ t2Dt ! .
~2.26!

We now determine the appropriate boundary conditions to
simulate an impact experiment. These will provide the cell
coefficients necessary to initiate the step-through solution of
Eq. ~2.26!.

E. Flyer-target impact

Rather than introducing a stress wave into the system with
sapp(t), as was done by Aboudi@11,20#, in this section we
derive the initial and boundary conditions consistent with the
experimental setup of a flyer plate colliding with a stationary
target. This is a standard experimental method for achieving
large transient stress fields in a material. The flyer and target
are not necessarily made of the same substance and the flyer
can also be made up of sections of different materials. For
example, in the experiment discussed below, the flyer plate
consisted of a small slab ofZ-cut quartz at the impact end,
backed with a substantially larger slab of polymethyl-
methacrylate~PMMA!. The PMMA is used to dampen the
high frequencyringing in the flyer upon acceleration and
before impact, and the entire system after impact. Conse-
quently, it acts to stabilize the experiment. In fact, all internal
transient motion in the flyer plate, arising when the flyer is
set into motion, is assumed to have ceased by the time of
impact —the flyer is assumed to be in a state of equilibrium.
We assume that the sample sections remain intact, and the
flyer and sample remain in contact throughout the measuring
time for the experiment. These conditions are met in the
experiment.

For discussion, we consider the reference frame where,
before impact, the flyer plate approaches the target with a
uniform velocityvo and the target sample is at rest. To ini-
tiate the step-through procedure outlined in the preceding
section, we seek values for the cell coefficients,
$w(a,p),f (a,p),U (a,p)%, at t50 and att5Dt, i.e., at impact
and one time step after impact.

To incorporate the flyer plate into the Aboudi formalism
we first divide the homogeneous material~s! making up the
flyer into ~fictitious! unit cells ~and each of these into two
subcells for easy coding!. Figure 3 shows a schematic of the
setup. Letpc denote the impact unit cell of the flyer; then cell
pc11 is the first unit cell of the composite target. The im-
pact subcell within cellpc is thea52 subcell. Likewise the
impact subcell of the target cell is thea51 subcell. Thus
cells $1,2, . . . ,pc% refer to the flyer plate and cells
$pc11,pc12, . . . ,N% refer to the target.@Parenthetically, a
window plate, attached to the target for detection is often
also part of the system~see Sec. III A!#.

We definet50 to be the time just at the instant of impact
— the cells are in contact but no compression of the cells has
yet occurred. At that time, the unit cells$1,2, . . . ,pc% are all
moving with uniform velocityvo , and unit cells in the tar-
get, $pc11,pc12,•••,N% are at rest. The relative displace-
ments and the stresses between each unit cell and between
each subcell are zero. Next, we can always chooseDt ~the
arguments for estimating an upper bound onDt are unam-
biguous and are given below! small enough such that at time
Dt, the subcells (2,pc) and (1,pc11) are now in a state of

FIG. 3. Schematic of composite impact plate experiment. The
homogeneous flyer material is also divided into cells for computa-
tion purposes. The impact interface is between subcells (2,pc) and
(1,pc11).
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compression, all others are not. Subcells
$(1,1),(2,1),(1,2),(2,2),. . . ,(2,pc21),(1,pc)% remain
moving with uniform velocity vo , and target subcells,
$(2,pc11),(1,pc12), . . . ,(2,N)% are still at rest.

These conditions are sufficient to determine cell coeffi-
cients att50 andDt. Continuity of stress and displacement
are forced at the impact interface@(2,pc)2(1,pc11)#. At
t5Dt this translates into the two equations,

s5r2,pcU2,pc
u̇2,pc5r1,pc11U1,pc11u̇1,pc11 ~2.27!

and

~vo2u̇2,pc!Dt5u̇1,pc11Dt , ~2.28!

where u̇a,p andUa,p are the particle and shock speeds, re-
spectively. Since the strain under these conditions is
e (a,p)5u̇a,p /Ua,p @10#, we arrive at three equations for the
three unknownse (2,pc),e (1,pc11), andu2,pc.

E11
1
2E18e

~1,pc11!~ x̄,t !5E21
1
2E28e

~2,pc!~ x̄,t !,

r1,pc11~vo2u̇2,pc!
25@E11

1
2E18e

~1,pc11!~ x̄,t !#

3@e~1,pc11!~ x̄,t !#2,

r2,pcu̇2,pc
2 5@E21

1
2E28e

~2,pc!~ x̄,t !#@e~2,pc!~ x̄,t !#2,

~2.29!

whereT (a,p)(t)→1 is applicable. Only the values ofu̇2,pc
~andu̇1,pc11) are needed. Though it is not necessary to do so,
rather than solving Eqs.~2.29! self-consistently, an analytic
solution ofu̇2,pc is possible if cubic strain terms are dropped;
this step is easily justified and was done to avoid unneces-
sarily complicating the numerical work.

Continuity of the displacement at the impact interface
yields the following constraint on the cell coefficients:

w~2,pc!1
d2,pc
2

f~2,pc!1
d2,pc
2

4
U ~2,pc!5u̇1,pc11Dt,

w~1,pc11!2
d1,pc11

2
f~1,pc11!1

d1,pc11
2

4
U ~1,pc11!5u̇1,pc11Dt .

~2.30!

Similarly, the displacement and stress continuity at interfaces
@(1,pc)2(2,pc)# and @(1,pc11)2(2,pc11)# give four
more equations:

w~2,pc!2
d2,pc
2

f~2,pc!1
d2,pc
2

4
U ~2,pc!5voDt,

w~1,pc11!1
d1,pc11

2
f~1,pc11!1

d1,pc11
2

4
U ~1,pc11!50,

~2.31!

f~2,pc!2
3d2,pc
2

U ~2,pc!50,

f~1,pc11!1
3d1,pc11

2
U ~1,pc11!50.

The solution of Eqs.~2.30! and ~2.31!, with u̇1,pc11 deter-

mined from Eq.~2.29!, provide the desiredt5Dt boundary
conditions

w~1,pc11!5 1
3 u̇1,pc11Dt,

f~1,pc11!52
u̇1,pc11

d1,pc11
Dt,

U ~1,pc11!5
2

3

u̇1,pc11

d1,pc11
2 Dt,

~2.32!

w~2,pc!5
u̇1,pc11

3
~2vo1u̇1,pc11!Dt,

f~2,pc!5
1

d2,pc
~ u̇1,pc112vo!Dt,

U ~2,pc!5
2

3d2,pc
2 ~ u̇1,pc112vo!Dt.

Finally, a few words on estimatingDt are in order. Neglect-
ing all considerations besides the impact itself that could
require further restrictions on the choice ofDt, one can
choose Dt to be some fraction of the lesser of
Dx2,pc /cL

(2,pc) and Dx1,pc11 /cL
(1,pc11) . Here,Dxa,p are the

widths of the spatial grid for the two subcells nearest the
impact interface.@Note that even the composite subcells can
be zoned on finer mesh than the actual material subcell if
necessary~see Sec. III A!#. Similarly, cL

(a,p) are the corre-
sponding longitudinal sound speeds. Since
cL
(a,p)5AEa /ra,p, Dt can be estimated entirely in terms of
the material properties. Taking one tenth of the smaller of the
two numbers gives a reliableDt.

III. NUMERICAL RESULTS

In this section we compare the generalized MOC results
to data from the flat-plate impact experiment. Our goal is
twofold. First, this comparison provides a rather stringent
test of the theory. We find that because of the complexity of
the setup~a large number of materials, etc.! estimates of
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many material properties are necessary. This includes not
only the viscoelastict andn for the polymeric compounds,
but also the nonlinear elastic moduliE8 for all the materials.
We emphasize that it isnot our goal to do an extensive
search over a large-as-feasible parameter space, but rather to
use whatever data we have on these materials to deduce rea-
sonable estimates for the parameters. We believe this pro-
vides a more honest representation of versatility of the
method, albeit probably not the best fit to the experimental
data but one that emphasizes the importance of having ad-
equate material property data independent of the experiment
being analyzed.

Second, we hope to shed light on some of the salient
features of the experimental results that have not yet been
explained by other theoretical methods. In our first set of
calculations we assume that the composite has translation
symmetry in its cell structure. This hypothesis is tested in
Sec. III E by allowing subcell widths in the composite to
vary randomly. In fact, this example has more than peda-
gogic importance because the composite in the experiment
has a visible amount of irregularity in its cell widths.

A. Experimental measurement

A schematic of the flyer, composite sample, and window
for the experiment is shown in Fig. 4; the dimensions and
mass densities for these are given in Table I. The flyer plate
in this experiment wasZ-cut quartz, backed by PMMA and
inserted into an aluminum projectile. Quartz in this orienta-
tion was chosen for its high Hugoniot elastic limit~HEL!.
The projectile was accelerated using a single stage 72 mm
bore gas gun facility, achieving a velocity of 0.5003 km/s.
Projectile tilt was not measured in this experiment, but from
previous measurements is assumed to be less than 2 mrad.
This implies a very planar impact which means the compos-
ite target was subjected to uniaxial strain. The composite
target was oriented with laminations normal to the impact

direction, was backed by a PMMA window, and had a thin
~0.025 mm! aluminum foil between the target and window to
provide a reflective surface. This reflective surface allowed
time-resolved particle velocity information to be measured
using a VISAR~velocity interferometer system for any re-
flector! velocity interferometer@23#. The VISAR system
used for the experiment was configured with a relatively long
delay leg to yield high particle velocity resolution. Particle
velocity was measured at the target-window interface yield-
ing an approximatein situmeasurement.

The composite portion of the system consisted of 19
nearly equal-width unit cells, each containing two subcells.
One subcell consisted of an epoxy-graphite mixture, and the
second, much thiner subcell was made of pure epoxy. We
refer to the epoxy-graphite subcell as 1, and the pure epoxy
subcell as 2. Approximately 39% of the volume of subcell 1
was graphite and the remaining volume was filled with ep-
oxy. The graphite was shaped into unidirectional fibers ori-
ented parallel to neighboring subcell walls and distributed
uniformly throughout the subcell.

B. Elasto-mechanical properties

To apply the MOC to this system requires substantial
knowledge of the elastic and viscoelastic properties of the
materials comprising the system. For a material like PMMA
much is known from previous high-quality experiments.@24#
Unlike for many homogeneous materials, however, the elas-
tic properties of the epoxy-graphite mixture are not previ-
ously tabulated. Nevertheless, sufficient information was
measured on the experimental system to deduce these.

The longitudinal sound velocity and the average density
were both measured for the entire composite:c̄L52.855
mm/ms andr̄51.564 g/cm3. The longitudinal sound veloc-
ity for pure epoxy, its mass density, and the mass density of
pure graphite are all known@25# or measured indepen-
dently here: cL

(2)52.520 mm/s, r251.27 g/cm3, and
rgraphite52.20 g/cm3, respectively. Finally, the average sub-
cell widths d1 and d2, were extracted from an optical
metallograph of the composite (d150.120 mm,
d250.027 mm). With this information in hand, we can es-
timate the elastic moduli of subcell 2 and the average moduli
for the entire composite. We find,E25r2@cL

(2)#2

FIG. 4. Schematic of the experiment. The flyer consisted of a
Z-cut quartz impactor, backed by a larger plate of PMMA. The
composite was made of epoxy, epoxy graphite unit cells. The par-
ticle velocity at the composite-PMMA-window interface was mea-
sured by laser interferometry.

TABLE I. Flyer, sample, and window dimensions and densities
in the composite experiment.

Component Length (mm) r (g/cm3)

Flyer
PMMAa 5.000 1.15
Z-cut quartz 1.557 2.65

Compositeb

Epoxy subcell 0.027 1.270
Epoxy-graphite subcell 0.120 1.630

Window
PMMA 5.000 1.15

aPMMA is the standard abbreviation for polymethylmethacrylate
bThe composite consisted of 19 unit cells making up a total length
of 2.806 mm.
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50.081 Mbar, andĒ5rcL
250.127 Mbar. ~Note that 1

Mbar 5 g cm/ms2). Next we seekr1, the effective mass
density of the epoxy-graphite component. To that end, we
note that the volume fraction for subcell 1 relative to thefull
unit cell isf15d1 /(d11d2). Since

r̄5r2~12f1!1r1f1 ~3.1!

we find immediately thatr151.630 g/cm3. Similarly, since
the average modulus for the composite is related to its con-
stituent moduli by

1

Ē
5~12f1!

1

E2
1f1

1

E1
, ~3.2!

we can solve for the elastic moduli for the epoxy-graphite
subcell. The result isE150.146 Mbar. This gives a sound
speed of 0.299 cm/ms for that material.

The nonlinear elastic moduliE8, have to be estimated for
the PMMA, quartz, epoxy, and epoxy-graphite mixture. This
can be done as follows. It is well documented@10,26# that
the shock speed (Us) varies linearly with the particle speed
(Up)over a substantial range; the relation isUs5c1sUp ,
wherec is the zero pressure bulk sound velocity@27# ands is
the slope. Material porosity, elastic-plastic transition, and
phase transitions are the usual causes of departure from lin-
earity. For the materials of interest to us here,Us , Up mea-
surements have been done elsewhere and theirs are tabu-
lated @25#. We can use our knowledge ofs to arrive at an
estimate forE8 sinces5rUpUs ande5Up /Us imply that

s5rUsUp5r~cL1sUp!Up5~rcL
2!e1~2rcL

2s!e21••• .
~3.3!

Comparing with the static-stress-strain equation~Eq. 2.2! al-
lows us to identifyE with rcL

2 and E8 with 4Es. ~In our
numerical work we apply the convention that stresses are
negative in compression and thus,E8524Es, is used.!

The mass density and elastic modulusE are well known
for PMMA. To obtain values forE8, n, andt we look to the
work of Schuler and Nunziato@24# whom have investigated
the elasto-mechanical properties of PMMA in considerable
detail. Using a plate impact experiment, they measured the
shock speed as a function of the particle speed, from which
we can estimate the slopes. From their data we extract a

value ofs approximately equal to 2, pertaining to stress that
the PMMA is subjected to in the experiment. From our esti-
mate E8524Es, we then arrive atE8520.72 Mbar.
Schuler and Nunziato also provide a means of estimating the
relaxation time. They found that their data fit well a stress-
dependent relaxation function of the form,

t5toexpF2S s2sE

k D G , ~3.4!

whereto50.25 ms andk50.8 kbar are constant parameters
fitted to the data. Here,sE is the equilibrium stress, i.e., the
stress state to which the material relaxes at constant strain,
when the strain is held fixed for all time, ands is the instan-
taneous stress. At 17 kbar one can extract from their mea-
surements, values of s2sE in the range
2 kbar<s2sE<4 kbar, giving a rather wide range of pos-
sible relaxation times of 0.002ms<t<0.02ms. Their data
are consistent with a relaxation ratio ofn'0.75.

The tabulated values@25# of s for pure epoxy and quartz
are 1.543 and 1.36, respectively, giving values of
E28520.50 Mbar andEquartz8 525.83 Mbar. For the epoxy
graphite mixture we estimates51.5, which follows simply
because this value is common to many materials. The relax-
ation timest for the epoxy is not expected to deviate sub-
stantially from those of the PMMA. The elastic moduli in
Table II were obtained in this manner.

Finally, we mention our layout~zoning! of the subcell
widths used in our numerical work. The entire system was
divided into 158 subcells. Rather surprisingly, the quartz im-
pactor did not require fine zoning; it was found to be suffi-
cient to divide the entire plate into 10 equal-width subcells
with d15d250.015 57 cm. On the other hand, the compos-
ite required more careful consideration. With nonlinear elas-
ticity included @the second term in Eq.~2.2!# unphysicalos-
cillations were found to be a common problem in the
numerical solutions. This could be eliminated somewhat by
making the composite subcells to be approximately equal
width. To do this we further divided the epoxy graphite sub-
cells into three equal-width~sub!subcells, each with width
0.004 cm. After this, each unit cell had three identical neigh-
boring graphite-epoxy subcells and oned250.0027 cm ep-
oxy subcell. Altogether the composite consumed 78 compu-
tational subcells. Finally, it was found that the impact side of

TABLE II. Flyer, sample, and window elastic moduli, relaxed moduli, and relaxation times for the
composite experiment.

Component E (g cm/ms2) E8 (g cm/ms2) n t (ms)

Flyer
PMMA 0.089 20.72 0.75 0.01
Z-cut quartz 1.072 25.83 1.0

Composite
Epoxy subcell 0.186 20.93a 0.90 0.015
Epoxy-graphite subcell 0.146 20.88 0.88 0.025

Window
PMMA 0.089 20.72 0.75 0.01

aSee comment on epoxy in Sec. III D.
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the PMMA window also required very fine zoning. This was
accomplished by dividing the forward segment of the win-
dow into 50 equal-width subcells, each having width of
0.0025 cm. The remaining window and the PMMA portion
of the flyer required only a coarse grid. The reason for the
small subcell widths in the window, near the impact surface,
was to be certain that our numerical solution would be sen-
sitive to all incoming deviations in the stress and velocity,
including the very high frequencyringing that arises from
reflections within the smallest subcells of the composite~in
our case, this was the epoxy subcells!.

C. Comparison of theory and experiment

In Fig. 5 the experimental and theoretical particle velocity
profiles ~velocity as a function of time! are shown. The ori-
gin of the time axis is placed at the instant of impact deter-
mined by the theory. Since absolute times were not recorded
in the experiment, we have taken the liberty of positioning
the experimental curve to match the theoretical one at the
steepest rise in the velocity, i.e., at the acceleration maxi-
mum. In the theory, the particle velocity is simply the time
derivative of the MOC displacement given by Eq.~2.1!. In
both the experiment and the theory, measurements were re-
corded at the composite-window interface. We begin by first
giving a rather ‘‘generic’’ explanation of the physics behind
the profile as seen by the detector located at the composite-
window interface.

About 0.9 ms after impact the velocity wave reaches the
observation point. Within a very short~but finite! duration,
the particle velocity goes from zero to a value of approxi-
mately 0.42 km/s. This peak in the profile~labeledB in the
figure! is caused by the main compression wave of the shock
reaching the observation point. For obvious reasons this
wave is commonly referred to as the loading wave. The
physical region in front of the shock wave is still uncom-
pressed, but behind the shock the system is in a state of
compression. At about 0.3ms after the arrival of the loading

wave, there is a rather abrupt drop in the particle velocity,
indicating that a release wave has arrived at the observation
point. Its origin is the following. At impact, stress continuity
tells us that a backward propagating compression wave in the
Z-cut quartz impactor must accompany the forward propa-
gating wave in the composite. The strength of the compres-
sion waves are equal at impact, and their respective speeds
are given by the solution of Eqs.~2.29!. The backward
propagating compression wave will travel unimpeded in the
flyer until it reaches the quartz-PMMA interface at which
time a portion is transmitted into the PMMA and a portion is
reflected back towards the window.

Because of the long length of the PMMA, and its lower
sound speed, the portion transmitted into the PMMA will
have detectable consequences only at times much larger than
the measuring times in the experiment~and theory!. Conse-
quently, from here on we will only follow the reflected por-
tion of the wave. Since the backward propagating compres-
sion wave is traveling in a higher acoustic impedance
material~quartz! and is partially reflected from the interface
of a lower impedance material~PMMA! the reflected wave
will be a release wave, i.e., a rarefaction wave~note, acoustic
impedance[ArE). Also, only a portion of the backward
moving compression wave is reflected, so the magnitude of
the rarefaction is only a fraction of the initial compression.
As the reflected wave strikes the quartz-composite interface,
again transmission and reflection takes place. Ignoring, for
the moment, the structure of the composite, the component
transmitted into the composite acts to release some of the
stress built up from the initial the loading wave. The final
important fact is that waves propagating in the compressed
region behind the shock front will propagate faster~super-
sonically! than in the uncompressed material. Consequently,
the releasewave catches up slightly and reaches the obser-
vation point about 1.3ms after the initial impact.

In the figure the initial loading wave elevates the particle
velocity to 0.42 km/s. The particle velocity stays at that
value~the flyer continues to push the target! until the release
wave arrives, thus reducing the particle velocity to
0.3 km/s. Yet, one more major reverberation occurs in the
experiment 1.8ms after impact. At that time a second release
wave, after traversing the quartz twice, arrives at the obser-
vation point. Again, this wave reduces the stress and the
particle velocity ~down to pointC in the figure! but by a
correspondingly smaller amount.

Overall, the agreement between the MOC theory and the
experiment is quite satisfactory. For the material parameters
chosen, the MOC particle velocities tend to be slightly
higher than those of the experiment. These material param-
eters represent our best objective estimates from independent
measurements. We reemphasize that our goal was not to do
anad hocadjustment of the material parameters until achiev-
ing a suitable fit. ~In fact, increasing EPMMA from
0.09 Mbar to 0.10 Mbar is all that is needed to make the
MOC plateaus agree with the experimental ones.! In Sec.
III D we comment on the small but well-defined oscillations
visible in this figure. Not surprisingly, the MOC calculation
reveals that these oscillations are a manifestation of the com-
posite structure. Further, nonlinear elasticity plays an impor-
tant role in achieving a quantitative description of this fine-
detailed structure, and will also be discussed.

FIG. 5. Experimental and theoretical velocity profiles for waves
propagating in the system shown in the preceding figure. Measure-
ments are taken at the composite-window interface. The oscillations
at (A) are unphysical. The particle velocity plateau at (B) is from
the initial loading wave. The velocity at (C), and then again at
(D), results when release waves arrive at the window.
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D. Nonlinear elasticity and homogenization

As explained in preceding sections, nonlinear elasticity is
incorporated into the theory by keeping terms to second or-
der in the strain in the stress-strain relation Eq.~2.14!. By
including this contribution one can assess both its attributes
and its undesirable qualities. First, the nonlinear terms are
responsible forunphysicalhigh frequency oscillations in the
stress and velocity waves~point A in Fig. 5! preceeding the
main ~physical! pulse. By increasing the modulusE8 to
larger and larger values, these oscillations can become vis-
ible in regionB. ~It was for this reason that we reduced our
estimate ofE8 for the epoxy subcell by 20% of the24sE
value.!

The fact that the oscillations are unphysical is self-evident
— they propagate ahead of the shock wave. Further, while
their intensity is linked slightly to complicated cell struc-
tures, these oscillations persist in an homogenized approxi-
mation for the composite~discussed momentarily!. Regard-
less of this undesirable property we state unequivocally that
obtaining results in quantitative agreement with experiment
require keeping the nonlinear elastic terms. To illustrate this,
we show in Fig. 6 a velocity profile obtained by keeping only
linear terms. Even though the agreement is visibly poor~the
rise time of the loading wave is too large and the physical
oscillations are greatly reduced!, an adjustment was still re-
quired to achieve this level of agreement; we replaced the
nonlinear material~variable acoustic impedance! with an
equivalent linear elastic material with a constant acoustic im-
pedance corresponding to this level of compression. To make
the experimental and theoretical plateau heights comparable,
we increasedEPMMA from the known value of 0.09 Mbar to
0.138 Mbar. We obtained the latter value by using the ex-
perimental observation that upon loading, the particle veloc-
ity in the PMMA reaches a value of 0.42 km/s. By argu-

ments similar to those in the derivation of Eq.~3.3! we can
arrive at an expression for an averageE that effectively in-
cludes effects of second-order terms

Eef f5~AE1sUpAr!2 , ~3.5!

which yieldsEef f'0.138 Mbar, upon inserting the material
parameters.

In Fig. 6 we also illustrate the important role that the
composite cells have in determining the low amplitude well-
defined oscillations observed at points (B) and (C), and to a
lesser degree at (D) in Fig. 5. We first homogenized the
composite by replacing the material cells with a single ma-
terial that has effectively the same average properties. Upon
doing so we find that the small oscillations are largely re-
moved.@The anomalous precursor oscillations~atA) and the
very high frequency oscillations at (B), associated with the
nonlinear elastic term, remain however.# The homogeniza-
tion used the experimentally determined sound speed and
average density for the entire composite~see Sec. III B!:
c̄L52.855 cm/ms and r̄51.564 g/cm3. Recall that these
are consistent withĒ50.127 Mbar. As usual, it is difficult to
estimate values fort̄,n̄ andĒ8. Since this calculation is only
for demonstration, we simply used the epoxy values of the
preceding section. The composite length remained as before.
Previous calculations on this system based on the MOC have
invoked homogenization from the start and find similar flat,
structureless plateaus in the velocity profile.@18# The present
calculation is the first one based on the MOC that keeps the
full cell structure for this~and to our knowledge any other!
plate impact problem.

E. Effects of disorder

We now examine the effect of adding a small amount of
‘‘disorder’’ to the composite. Obviously, one can do this in
several ways. For example, the amount of graphite in a given
composite subcell varies somewhat from cell to cell. The cell
dependence of the mass density is sufficient to break the
translational symmetry of the composite. In the experiment
this is probably a small effect since the epoxy graphite mix-
ture appears to be quite homogeneous. Another example, the
one tested here, is to allow the cellwidth to vary from sub-
cell to subcell. This was the case in the composite used in the
experiment. The values of subcell widthsd1 andd2 used in
the preceding section, are estimates of the average subcell
widths. In fact, it is difficult to determine quantitatively the
amount of variation in the cell widths. Consequently, we
hope to use the MOC to help answer this question.

A random component can be incorporated into the cell
widths in several different ways. For our purposes we have
chosen to keep each unit cell width,d11d2, fixed at the
value of 0.0147 cm used in previous sections. Within each
unit cell, however, we will allow the subcell widths to vary
from one unit cell to the next~with the above restriction!. In
our numerical work, this was done by adding a randomly
chosen width increment to a minimum tolerable width. The
result was then normalized to fix the unit cell width
(d1,p1d2,p50.0147 cm). By proceeding this way, any given
subcell width could be kept from becoming measurably less
than its neighbors, a circumstance that can compromise the

FIG. 6. Theoretical velocity profiles arrived at by omitting non-
linear elastic contributions~bottom profile! and by replacing the
discrete cell structure of the composite by a continuum~top profile!.
The experimental profile is also shown.
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accuracy of the numerical solution. In Fig. 7, a representative
cell width distribution is displayed. The longer~shorter! cell
widths belong to the epoxy graphite~epoxy! subcells. The
horizontal dashed lines indicate the average widths used in in
the preceding sections for subcells 1 and 2.

The effects on the velocity profile from including disorder
into the system can be seen from Fig. 8. For comparison, the
experimental profile is also included. The theoretical peri-
odic and disordered calculations used exactly the same set of
elastic and relaxation parameters as input~those listed in
Table II!. It is clear from the figure that random subcell
widths, to the amount given in Fig. 7, has several visible
effects on the profile. The high frequency structure residing
on the loading portion of the velocity profile~pointB in Fig.
5! is considerably more chaotic and less well defined than in
the periodic case. On the other hand, the oscillations in re-
gion C, after the arrival of the first release wave displays
only small changes. This rather surprising result may be
caused by the fact that the region behind the release wave is
at a much lower pressure than behind initial loading wave.
To test this hypothesis we lowered the impact velocity to a
value of 0.3 km/s and observed the effects of disorder on the
loading wave~point B). This result supports the hypothesis
since the incorported disorder had noticably less effect than
for the higher impact case. This demonstrates the compli-
cated interplay between the cell structure, the nonlinear elas-
ticity, and the wave propagation in this calculation. Finally,
returning to the original question, our conclusions are that
the composite used in the experiment has very little cell-
width disorder since the small oscillations are well defined
and clearly visible in the experimental data.

IV. SHORTCOMINGS OF THE MOC

From the results of the previous sections it is clear that the
MOC is a useful and versatile tool for investigating transient
propagation in rather complex materials. Even though this
may be the case, we close the discussion with some critical

comments regarding the MOC.
The first point we mention is obvious but important: The

theory requires considerable input from material parameters,
some of which are phenomenological parameters needed in
the viscoelastic theory. The elastic modulusE can be ob-
tained in principal, from adiabatic stress-strain measurements
or adiabatic sound wave experiments, or from microscopic
calculations and even computer simulations. To a lesser de-
gree, this is also true forE8. On the other hand, only in a few
exceptional cases~PMMA is an example! have studies been
done to determine the relaxation parameters for viscoelastic
materials in high stress fields. As a result, depending on the
complexity of the setup and the materials, one can find them-
selves in a situation of having too many ‘‘adjustable param-
eters’’ to achieve trustworthy results. Certainly for the com-
plicated setup in the experiment it is important to have
independent, reliable experimental data at hand for the indi-
vidual constituents.

Our second point concerns truncating the Legendre series
for the displacement. To be confident of the quality of the the
MOC expansion it would be desirable to carry out a calcu-
lation forN51, and thenN52, and so on, until the numeri-
cal results are independent of theN used. In our work, we
did this for N51 and 2. As a result, we found that the
N51 expansion captured the magnitude of the stresses and
velocities with surprising accuracy, but overall the results are
more choppy than forN52 expansion. This is easily under-
stood because the stress calculated at the levelN51 is in-
dependent of the local variablex̄; the stress within a subcell
is a constant. Thus the stress, when plotted as a function of
position has a histogramlike shape. Going to higher and
higher order in the truncation gradually removes this defect.
For example, atN52 the stress varies linearly withx̄ allow-

FIG. 7. Distribution of composite subcell widths, with a random
component added. The horizontal dashed lines represent the subcell
widths used in the periodic cell calculation. Although the individual
subcell widths are random, the total width of each unit cell is fixed
at the value used in the periodic case.

FIG. 8. Comparison of theoretical velocity profiles obtained
with periodically repeating unit cells in the composite~bottom pro-
file! and with the subcell width distribution shown in the preceding
figure ~top profile!.
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ing for the possibility of more closely matching of slopes on
the two sides of an interface.

Third, the MOC is entirely a mechanical theory. Without
incorporating more formalism into the method we have pre-
cluded a proper treatment of the thermodynamics of dissipa-
tive processes@28#, including nonadiabatic effects, and a
proper treatment of plastic flow~which is important in com-
posites made of metals with low yield strengths, e.g., copper
and aluminum!. Certainly this does not exhaust the list of
possibilities.

V. CONCLUSIONS

In spite of the various qualifications we have raised to the
application of the method of cells in real wave-propagation
applications in composite materials, the method is really
quite versatile. Here we included~1! sudden impact,~2! non-
linear elasticity,~3! viscoelasticity, and~4! arbitrary~nonpe-
riodic! layering. The calculated results~for N 5 2! give a
reasonably good representation of the actual experimental

data in the case of a moderately simple, layered composite.
Improvements in these calculations require comprehensive
data on the component materials and perhaps extension of
the theory to displacement expansions of orders higer than
N 5 2. These are not easy problems to overcome in practical
situations. Thus, when it appears necessary to include de-
tailed effects of composite material behavior in applied
wave-propagation situations, it would probably be prudent to
examine the overall commitment and experimental resourses
that can be brought to bear on the problem.
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